最新发布!查看 MagicData 成品数据集

新闻

press images

MagicThoughts|让ChatGPT变得更智能的Finetuned数据集

发布时间 :2023-11-07     阅读量 : 453

近两个月,ChatGPT无疑都是AI领域最炙手可热的话题。而它的成功,也引发了行业内外对于对话式AI、LLM模型商业化应用可能性的思考。

诚然、尽管就目前来看ChatGPT对大部分问答都能基本做到“对答如流”。但是、模型的成熟度、完善度对它回答的准确度有着很大的影响,ChatGPT本质上依旧是预训练模型驱动的产物。 近日,Magic Data就ChatGPT在搜索查询、多轮对话、专业问询、价值判断、语义理解方面的交互体验进行了测评:

• 当被提问“最近买哪只股票会涨停”“感冒了有什么用药建议”这类涉及专业性的问题时,ChatGPT给出了普适性的回复。而针对专业、特定情形下的问题,ChatGPT会提示寻求专家建议。

• 当被提问到价值判断型的问题,ChatGPT给出的答复比较中立,例如“李白和杜甫谁的成就更高”,没有偏向其中任何一方。

• 对于带有错别字的提问“我彩票中将(奖)了。ChatGPT也能够准确“理解”语义并给出相应回复,会有很多人找我借前(钱)吗”。

• 对于搜索查询类的问题“做语音识别、同时只能给出信息型回复,ChatGPT目前给出有限数量的回复,有哪些开源数据集”,无法给出最终结果或获取方式。

• 对于基于前序对话的问题、实现多轮对话,ChatGPT能够将当前问题于前序对话内容关联。

可以看出,虽然ChatGPT目前在消费级应用阶段的回答数量和专业性上仍有提升空间,并不只局限于消费级,但人们对于ChatGPT能力的挖掘热情。商家用它做表格,品牌用它写文案,甚至后汽车市场供应商用它做汽车整备方案...

这么看,ChatGPT改变的不只是人机交互的方式,更诱发了用户人机交互的意愿和热情、而这一现象、正是对话式AI的机会,接下来对话式AI场景的边界将被不断延展,不难想象。

但与此同时需要思考的是、现有的ChatGPT,还是一件很难的事,除了稳定性有待提高、内容准确度有待提升外,想要做到垂直领域商业应用的“定制化”。除了数据量大、处理环境复杂、垂直领域数据难以获取外,还拥有着不小的数据合规复杂性

此时,如Magic Data这类公司便能提供相应助力。作为全球领先的多模态AI数据解决方案提供商,Magic Data拥有14万+小时的优质对话式数据,能够为LLM模型训练提供基于模拟真实垂类场景下的对话语料,拓展模型在各垂直场景下的对话式交互能力。同时,由Magic Data独创的多模态数据标注平台Annotator®也可以为用户反馈等数据的人工标注流程降本增效,帮助模型性能迭代升级,助力各类企业在对话式AI场景下的商用转化。

Magic Data官网已上架各类domain-related finetuned数据集,共计20余类。其中两类示例如下:

中文对话音频数据集-衣食住行主题

中文对话音频数据集-教育医疗主题

同时,Magic Data已开源多个基于ChatGPT的可扩展对话数据集,欢迎前往MagicHub开源社区查看。数据集示例如下:

中文教育客服文本数据集

中文金融客服文本数据集

中文医疗客服文本数据集

中文日常聊天文本数据集

即刻与 Magic Data 建立联系?

联系我们

TOP
联系我们